Hydrological Evaluation of TRMM Rainfall over the Upper Senegal River Basin

نویسندگان

  • Ansoumana Bodian
  • Alain Dezetter
  • Abdoulaye Deme
  • Lamine Diop
چکیده

The availability of climatic data, especially on a daily time step, has become very rare in West Africa over the last few years due to the high costs of climate data monitoring. This scarcity of climatic data is a huge obstacle to conduct hydrological studies over some watersheds. In this context, our study aimed to evaluate the capacity of Tropical Rainfall Measuring Mission (TRMM) satellite data to simulate the observed runoffs over the Bafing (the main important tributary of the Senegal River) before their potential integration in hydrological studies. The conceptual hydrological model GR4J (modèle du Génie Rural (Agricultural Engineering Model) à 4 paramètres Journalier (4 parameters Daily)) has been used, calibrated and validated over the 1961–1997 period with rainfall and Potential Evapotranspiration (PET) as inputs. Then, the parameters that best reflect the rainfall-runoff relation, obtained during the cross-calibration-validation phase, were used to simulate runoff over the 1998–2004 period using observed and TRMM rainfalls. The findings of this study show that there is a high consistency between satellite-based estimates and ground-based observations of rainfall. Over the 1998–2004 simulation period, the two rainfall data series show quite satisfactorily results. The output hydrographs from satellite-based estimates and ground-based observations of rainfall coincide quite well with the shape of observed hydrographs with Nash-Sutcliffe Efficiency coefficient (NSE) of 0.88 and 0.80 for observed rainfalls and TRMM rainfalls, respectively.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modelling Hydrologic Processes in the Mekong River Basin Using a Distributed Model Driven by Satellite Precipitation and Rain Gauge Observations

The Mekong River is the most important river in Southeast Asia. It has increasingly suffered from water-related problems due to economic development, population growth and climate change in the surrounding areas. In this study, we built a distributed Geomorphology-Based Hydrological Model (GBHM) of the Mekong River using remote sensing data and other publicly available data. Two numerical exper...

متن کامل

Evaluation of Satellite Precipitation Products with Rain Gauge Data at Different Scales: Implications for Hydrological Applications

Rain gauge and satellite-retrieved data have been widely used in basin-scale hydrological applications. While rain gauges provide accurate measurements that are generally unevenly distributed in space, satellites offer spatially regular observations and common error prone retrieval. Comparative evaluation of gauge-based and satellite-based data is necessary in hydrological studies, as precipita...

متن کامل

Integrating Global Satellite-Derived Data Products as a Pre-Analysis for Hydrological Modelling Studies: A Case Study for the Red River Basin

With changes in weather patterns and intensifying anthropogenic water use, there is an increasing need for spatio-temporal information on water fluxes and stocks in river basins. The assortment of satellite-derived open-access information sources on rainfall (P) and land use/land cover (LULC) is currently being expanded with the application of actual evapotranspiration (ETact) algorithms on the...

متن کامل

Future climate change impact on hydrological regime of river basin using SWAT model

Hydrological components in a river basin can get adversely affected by climate change in coming future. Manipur River basin lies in the extreme northeast region of India nestled in the lesser Himalayan ranges and it is under severe pressure from anthropogenic and natural factors. Basin is un-gauged as it lies in remote location and suffering from large data scarcity. This paper explores the imp...

متن کامل

TRMM satellite rainfall data

Spatial rainfall is a key input to Distributed Hydrological Models, which is the most important limitation for the accuracy of hydrological models. Model performance and uncertainty could increase when rain gauge is sparse. Satellite-based precipitation products would be an alternative to ground-based rainfall estimates in present and 5 the foreseeable future, however, it is necessary to evalua...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016